

Development of a Low-dose Percutaneous Delivery System of Lenalidomide for Hematologic Malignancies: The Journey from Ideation to Phase 2

Dr Jamie Oliver Chief Medical Officer

STAR-LLD (lenalidomide) development strategy

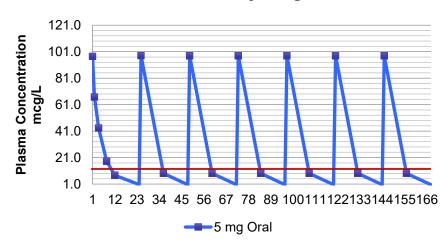
Three unique continuous delivery technologies

Subcutaneous infusions

Ambulatory pump

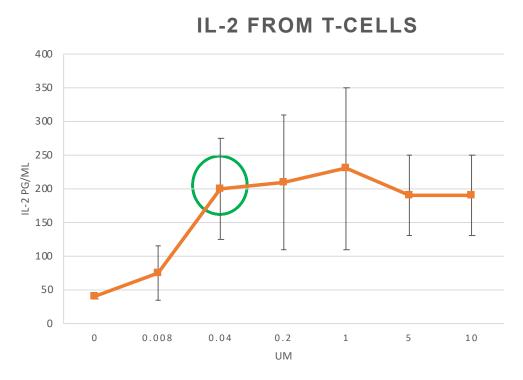
Oral Controlled Release (OCR)
24 h blood levels with ± 20% deviation

Transdermal Patch Technologies
Adhesive matrix


Polymer dermal

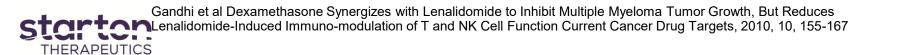
Lenalidomide (Revlimid)

- Flattening the blood concentration curve
- Used for a number of hematologic malignancies (MM/CLL)
- Has a very short half-life but administered 1x a day
- By 16 hours blood levels are subtherapeutic
- Toxicity is primarily related to AUC not Cmax
- Efficacy not associated with Cmax
- Continuous delivery is able to target effective blood levels without excess drug being administered
- We are targeting patients with MM who are experiencing toxicity with Revlimid
- Intend to follow with CLL maintenance with BTK inhibitor and/or venetoclax
- Other uses would be mantle cell, lymphomas, potentially prostate cancer
- Expand use to CAR-T cell progression and Bispecific antibody therapy


Lenalidomide 5 mg Oral Dose Plasma Concentration and Continuous Delivery Targets

Defining targeted blood levels

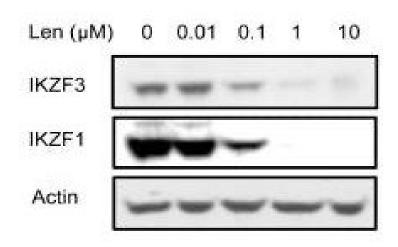
Immune activation thresholds for lenalidomide in multiple myeloma

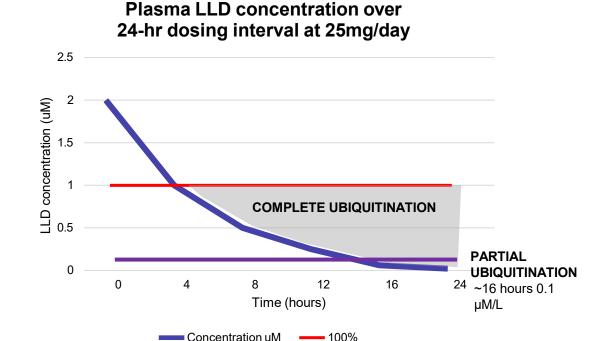

2500 2000 1000 1000 0 0.008 0.04 0.2 1 5 10

IL-2 release from T cells

IFN-y release from NK Cells

Minimum effective concentration is $0.04 \mu M/L = 10 \text{ ng/mL}$


Constant exposure at the µM target produced these results



STAR-LLD targets optimal dose-related cereblon activity

Continuous delivery concentration selected to induce ubiquitination of Ikaros/Aeolos proteins; IKZF1 and IKZF3

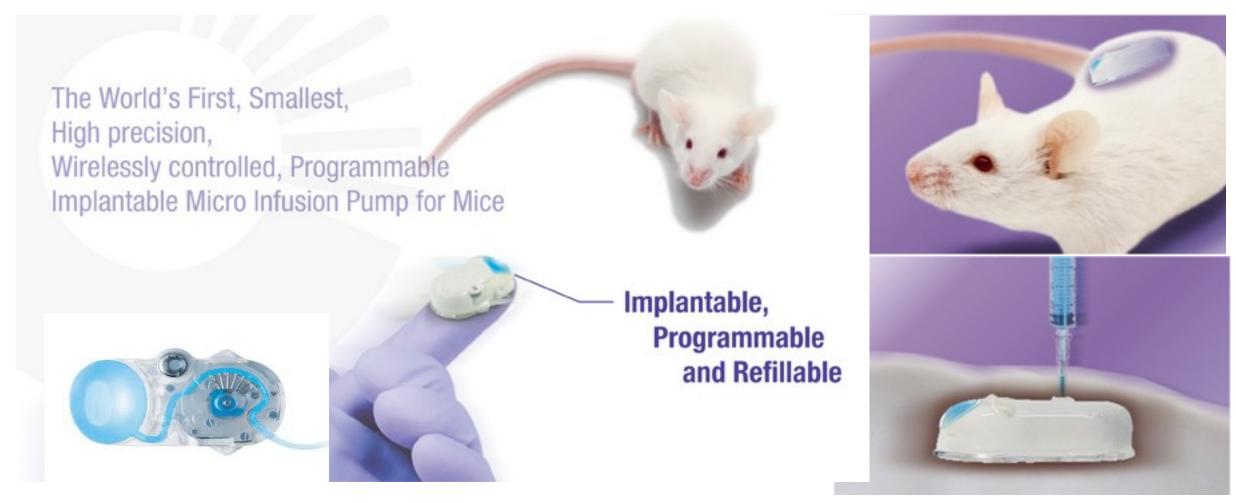
- Cereblon protein expressed in myeloma cell lines
- Cereblon expression an important biomarker of IMiD response (Stankova Klin Oncol 2014)
- Minimum LLD concentration to induce degradation of IKZF1/3 proteins 0.1 µM/L = 25 ng/mL*

ubiquitination

Kronke et al. Science 2014: 343:301-305

 $\underline{\text{https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed\&retmode=ref\&cmd=prlinks\&id=24292625}$

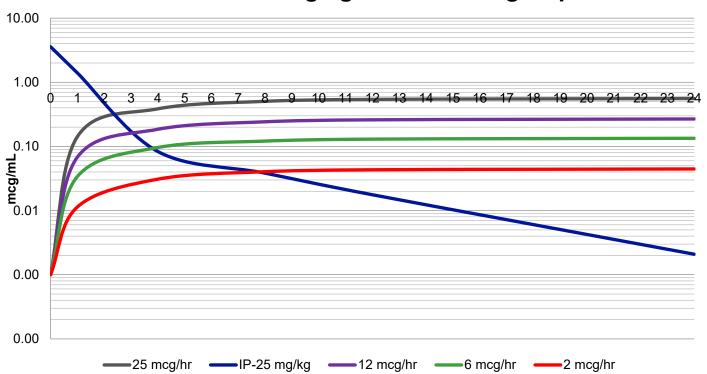
Rodent Studies of PK, Safety, and Tolerability of LLD



Lenalidomide (LLD) nonclinical rodent studies

- Multiphase project Assess SC dosing and PK of Lenalidomide in mice
 - Step 1: Determine the mouse pharmacokinetics of LLD from literature and in vivo
 - Step 2: Create a parenteral formulation to achieve required solubility for optimal pump operation
 - Step 3: Model the once daily LLD i.p. control dose and s.c. test concentrations distributed above and below the dosing mid-point — Test with iPrecio pump for 10-days in CB17 healthy mice
 - Step 4: Assess PK and tolerability of 4 doses to translate to SCID mouse study
 - Step 5: Select 4 infusional doses plus once daily i.p. Len based on tolerability data
 - Step 6: Perform 29-day implantable pump treatment in CB17 NCI H929 xenograft SCID mice (100 mm³ at start of treatment)
 - Step 7: Perform 26-day implantable pump treatment in CB17 RPMI IMiD resistant xenograft SCID (100 mm³ at start of treatment)
 - Step 8: Perform a 28-day continuous infusion toxicology study in healthy CD20 mice

iPrecio wireless programable subcutaneous pump



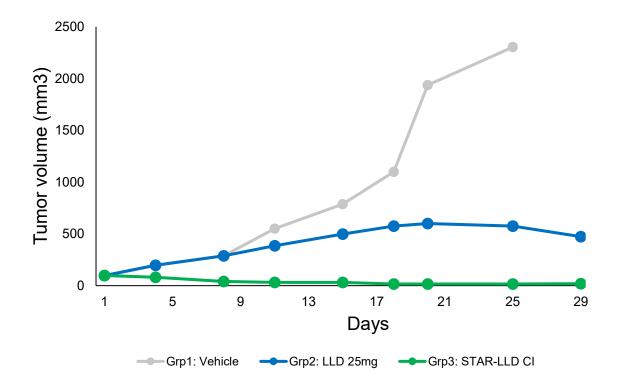
NA-p354: preclinical rodent study 1 of 4: dose finding study in CB.17 mice

CB.17 mice N=3 animals per group Study evaluated tolerability of lenalidomide (LLD) intraperitoneal (IP) injection (standard of care in the MM model) vs. LLD continuous subcutaneous delivery in healthy mice

Lenalidomide 25 mg/kg IP vs 4 dose groups SC

Agent	Active dose	Route	Schedule
vehicle	na	ip	qd x 10
lenalidomide	25 mg/kg (550 μg bolus)	ip	qd x 10
lenalidomide	600 µg/day	sc osm pump ¹	Continuous for 10 days
lenalidomide	288 µg/day	sc osm pump ¹	Continuous for 10 days
lenalidomide	144 µg/day	sc osm pump ¹	Continuous for 10 days
lenalidomide	48 μg/day	sc osm pump ¹	Continuous for 10 days

1- iPrecio subcutaneous(sc) pump



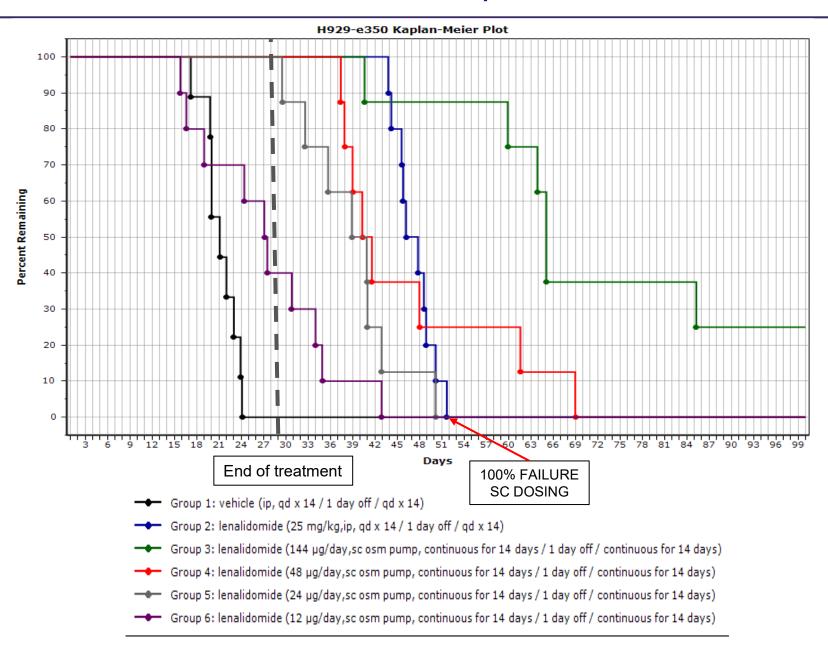
Study 2 of 4: Continuous LLD dosing in NCI H929 MM xenograft SCID mice

Gr.	N	Agent	Formulation dose	Active dose	Route Schedule		Vehicle	Dosing volume scale ml/kg
1#	10	vehicle		na	ip	qd x 14 / 1 day off / qd x 14	-	10
2	10	lenalidomide	25 mg/kg	550 μg x1 20 mg/kg	ip	qd x 14 / 1 day off / qd x 14	-	10
3	10	lenalidomide	144 μg/day	144 μg/day	sc osm pump ¹	continuous for 14 days / 1 day off / continuous for 14 days	-	10
4	10	lenalidomide	48 μg/day	48 μg/day	sc osm pump ¹	continuous for 14 days / 1 day off / continuous for 14 days	-	10
5	10	lenalidomide	24 μg/day	24 μg/day	sc osm pump ¹ continuous for 14 days / off / continuous for 14 days		-	10
6	10	lenalidomide	12 μg/day	12 μg/day	sc osm pump ¹	continuous for 14 days / 1 day off / continuous for 14 days	-	10

H929-p216: lenalidomide continuous infusion displayed superior efficacy over standard of care at the end of active treatment

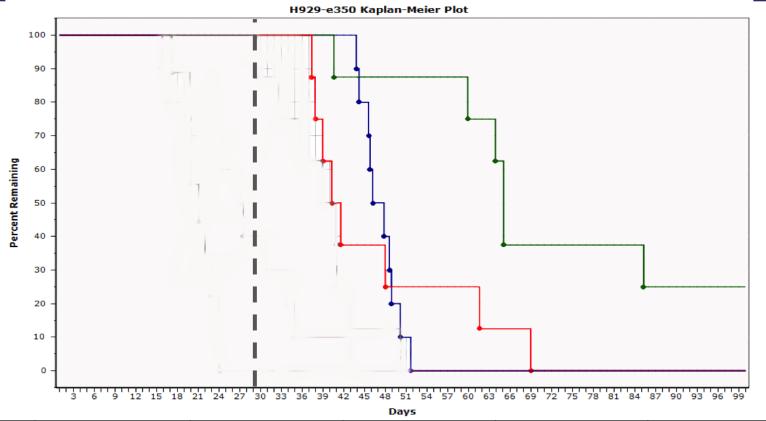
Group	Tumor volume change from BL (day 29)
GRP 1 (vehicle)	+ 2518%*
GRP 2 (lenalidomide IP 25mg/kg)	+ 483%
GRP 3 (144 μg/day continuous infusion)	- 81%

^{* =} at failure < 25 days


Data on file for 48ug/day strength

Baseline tumor volume 100mm3

SCID: severe combined immunodeficient


Lenalidomide rodent studies – results – efficacy – time to treatment failure

2 animals with Tumor Free Survival

H929-p216: RESULTS – EFFICACY – Time to Treatment Failure (TTF)

Route	Active dose
IP	25 mg/kg
sc osm pump	144 μg/day
sc osm pump	48 μg/day

2 SC animals with Tumor Free Survival

Route	Active dose	Median TTE (days)	TTF (days)	Partial Response (PR)	Complete Response (PR)	Tumor Free Survival (TFS)
IP	25 mg/kg	47	53	0	0	0
sc osm pump	144 µg/day	65	>100	6	4	2
sc osm pump	48 μg/day	41	71	1	0	0

PK and administered doses in each treatment group

Group	Prescribed Dose	Daily Dose (µg/day)	Cmax µg/mL	AUC 0-24 (μg/mL/hr)	% Exposure to Grp 2 by AUC	% Exposure to Grp 2 by Daily Dose	
2	25 mg/kg/d	500 mcg	3.2	10.9	100%	100%	
3	6 mcg/hr	144 mcg	0.15	2.6	23.8%	28.8%	
4	2 mcg/hr	48 mcg	0.05	0.9	8.3%	9.6%	
5	1 mcg/hr	24 mcg	0.025	0.5	4.6%	4.8%	
6	0.5 mcg/hr	12 mcg	0.0125	0.3	2.3%	2.4%	

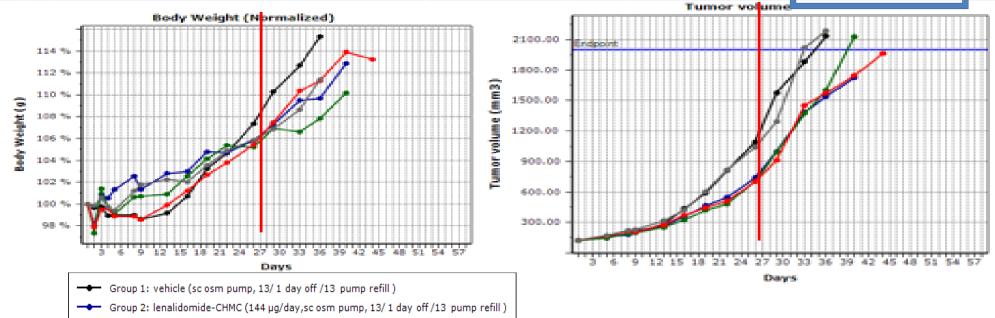
Group 1: vehicle (ip, qd x 14 / 1 day off / qd x 14)

Group 2: lenalidomide (25 mg/kg,ip, qd x 14 / 1 day off / qd x 14)

Group 3: lenalidomide (144 μg/day,sc osm pump, continuous for 14 days / 1 day off / continuous for 14 days)

Group 4: lenalidomide (48 μg/day,sc osm pump, continuous for 14 days / 1 day off / continuous for 14 days)

Group 5: lenalidomide (24 μg/day,sc osm pump, continuous for 14 days / 1 day off / continuous for 14 days)


Group 6: lenalidomide (12 μg/day,sc osm pump, continuous for 14 days / 1 day off / continuous for 14 days)

Study 3 of 4: STAR-LLD in RPMI-IMiD resistant cell line: study results

Group 3: lenalidomide-CHMC (216 μ g/day,sc osm pump, 13/1 day off/13 pump refill) Group 4: lenalidomide-CHMC (288 μ g/day,sc osm pump, 13/1 day off/13 pump refill)

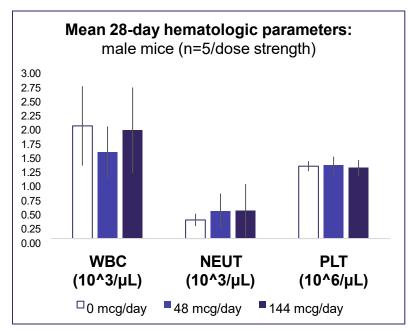
Group 5: lenalidomide (25 mg/kg,ip, 13/1/13)

	Treatment Regimen 1					TTF Stats (not adjusted		Day 27 Stats						
Group	n	Agent	mcg/day	Route	Schedule	100% TTF (days)	(days)	for multiple tests)	MTV (mm3), Day 27	(not adjusted for multiple tests)	PR	CR	TFS	BW Nadir
1#	10	vehicle	-	sc osm pump ¹	13/ 1 day off /13 pump refill	51	36	1 vs 5 = 0.81	1116 <u>+</u> 215	1 vs 5 = 0.99	0	0	0	-1.4% (9)
2	10	lenalidomide-CHMC	144*	sc osm pump ¹	13/ 1 day off /13 pump refill	51	41	2 vs 5 = 0.14	740 <u>+</u> 130	2 vs 5 = 0.03	0	0	0	-2.0% (2)
3	10	lenalidomide-CHMC	216 *	sc osm pump ¹	13/ 1 day off /13 pump refill	58	42	3 vs 5 = 0.07	707 <u>+</u> 77	3 vs 5 = 0.003	0	0	0	-2.6% (2)
4	10	lenalidomide-CHMC	288 [*]	sc osm pump ¹	13/ 1 day off /13 pump refill	58	43	4 vs 5 = 0.049	702 <u>+</u> 128	4 vs 5 = 0.018	0	0	0	-2.1% (2)
5	10	lenalidomide	550	ip	13/1/13	51	36		1116 <u>+</u> 108		0	0	0	-0.6% (5)

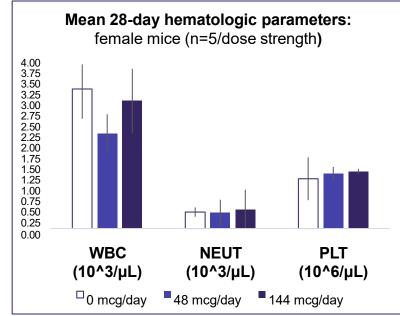
Study 4 of 4: LLD-SC-GLPM-052021: toxicology/safety study

HEALTHY CD20 mice N=20 animals per group Study evaluated effect of chronic subcutaneous (SC) administration of continuous lenalidomide on tolerability, histopathology, and key hematologic parameters

Route	Active dose	Population	Stratification
Vehicle control		N=20 (10 male + 10 fem)	1:1 8 days or 28 days
sc tethered pump	144 μg/day	N=20 (10 male + 10 fem)	1:1 8 days or 28 days
sc tethered pump	48 μg/day	N=20 (10 male + 10 fem)	1:1 8 days or 28 days


Key endpoints:

- I. Local tolerability
 - Survival
 - Body weight
 - Infusion site tolerability
- II. Hematology
 - White blood cell (WBC)
 - Neutrophil (ANC)
 - Lymphocyte (ALC)
 - Platelets
- III. Histopathology
 - Necrosis at infusion site
 - Cellular damage



Preclinical rodent study 4: toxicology and hematologic tolerability

STAR-LLD showed no hematologic toxicity in chronic treatment

Healthy CD20 mice 3 treatment groups N=20 animals per group Terminal Sacrifice at 8 and 28 days

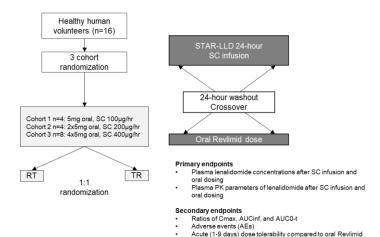
No significant differences compared to sham

- √ No neutropenia
- No thrombocytopenia
- ✓ No local infusion site toxicity
- ✓ No test article related toxicity

Study evaluated effect of chronic subcutaneous (SC) administration of continuous lenalidomide on tolerability, histopathology, and key hematologic parameters

NOAEL = in mice was 272 µg/hr/kg

HED NOAEL = $1540 \mu g/hr$



Into the clinic – Translational Program

STAR-LLD Phase 1a cross-over bioavailability study

Phase 1: An Open-label, Randomized, Crossover, Single Ascending Dose Study of Continuous Subcutaneous Infusion of Lenalidomide Compared With Revlimid® Oral Capsules In Healthy Adult Male Subjects

100 µg/h Vs 5 mg gd Dose

5/100

5/101

5/102

200 µg/h Vs 10 mg gd

400 µg/h

5/103 174 75.3 73 3.59 211.75 75.1 93.23 4.38 mean 8.3 SD 40.9 16.5 0.64 10/200 550 170.0 234 10.32 5 10/201 427 6 143.7 190 8.36 10.4 10/202 548 225.0 226 10/203 524 170.5 220 10.03 512.25 177.3 217.50 9.78 mean SD 58.0 34.1 19.2 0.96 20/400 1057 312.8 493 21.54 9 991 300.9 19.8 20/401 10 484 1008 230.3 407 18.71 20/402 11 20/403 941 271.3 398 17.69 12 Vs 20 mg qd 20/404 13 1091 236.8 475 20.89 20/405 14 1028 332.6 440 20.85 20/406 1208 309.3 21.72 20/407 429.2 452 1104 20.7 1053.50 302.9 455.63 20.24 mean SD 82.0 62.8 38.1 1.41

Revlimid

AUC

h*mcg/L

202

270

201

Subject

3

Revlimid

Cmax mcg/L

86.7

67.9

70.5

LLD

AUC

h*mcg/L

90.5

112.9

96.5

Css sc

mcg/L

4.31

5.16

4.44

STUDY RESULTS:

- STAR-LLD well tolerated with no meaningful drug-related toxicity
 - 7/17 subjects (41%) had TEAE
 - 1 TRAE (headache @ 9.6mg/d)
- STAR LLD achieved >92% bioavailability across all doses
- Plasma levels where >90% lower Cmax, a ~57% lower AUC, and sustained Cmin at targeted dose levels
- Study validated compatibility and utility of subcutaneous delivery system
- Starting RP1D is 400 µg/h (based on animal and human data)

AUC: area under the curve.

TEAE: treatment emergent adverse event. TRAE: treatment related adverse event

Phase 1b in patients with relapsed/refractory multiple myeloma

A Protocol to Assess the Safety, Efficacy, and Pharmacokinetics of Continuous Subcutaneous Administration of Low-dose Lenalidomide (STAR-LLD) for the Treatment of Multiple Myeloma (MM)

Six patients

- Two U.S. sites
 - Gabrail Cancer Center Canton, OH
 - Regional Cancer Center Wilson, NC
- 2nd line or greater transplant ineligible RR multiple myeloma
- Planned treatment with RVd
- Prior treatment with V is allowed if the patient was sensitive to V (6mo PFS after stopping V)
- Substitutes STAR-LLD for Revlimid at a 60% lower dose than Revlimid
- STAR-LLD given continuously on 28-day cycles
- STAR-LLD administered subcutaneously with a Smith Medical 510 K cleared ambulatory pump
- DLTs will be evaluated in cycle 1
- Safety will be assessed on TEAEs, TRAEs, and AESIs
- Efficacy will be assessed by ORR, PFS
- Biomarkers will be obtained for T and NK cell function/activation to provide a correlate to PK/PD

Introduction

- Lenalidomide is a mainstay of treatment for MM
- The half-life of lenalidomide is very short necessitating high daily doses to maintain effective concentrations leading to toxicity
- In RRMM³ Lenalidomide + dexamethasone produced Grade 3-4 hematologic toxicity of >59% and led to 19.8% discontinuation
- Predicted effective blood levels of Len are:
 - > 0.04 μ M (10 μ g/L) for immunologic activity¹, and
 - > 0.1 μ M (25 μ g/L) for cytotoxic effects²

3, DM Weber et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. NEJM 2007; 357: 2133-2142.

^{1.} Gandhi AK, Kang J, Capone L, et al. Dexamethasone synergizes with lenalidomide to inhibit multiple myeloma tumor growth, but reduces lenalidomide-induced immunomodulation of T and NK cell function. Curr Cancer Drug Targets. 2010 Mar;10(2):155–67.

^{2.} Krönke J, Udeshi ND, Narla A, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014 Jan 17;343(6168): 301–5.

Methods and Materials

- Patients were 2nd line or greater RRMM
- Regimen: Bortezomib 1.3 mg/m² and dexamethasone 20-40 mg weekly dosing on 28-day cycle. Lenalidomide continuous SC infusion at 400 μg/h (9.6 mg a day) with 28-day cycle
- Len delivered SC 24/7 continuously by Smith Medical Solis VIP ambulatory device
- Patient trained to administer Len infusion at home or could come to clinic 3 times a week

Endpoints

Primary Endpoints

- The grade, frequency, and relationship of treatment-emergent adverse events (TEAE/TRAEs) including adverse events of special interest (AESIs): (gastrointestinal [GI] toxicity, fatigue, hematologic toxicity, rash (non-infusion site).
- The observation of dose-limiting toxicities (DLTs) of STAR-LLD during Cycle 1.

Secondary Endpoints

- Immune profiles, functional assays for NK cell activation and antigen specific T-cell activity.
- Blood concentrations of lenalidomide at on Day 1 and at steady state.
- Changes in biomarkers during treatment.
- Rate of complete response, very good partial response (VGPR), partial response (PR), stable disease (SD), and progressive disease.
- Determination of ORR, PFS, and DOR

Results – Baseline Findings

- Between Oct 2023 and April 2024 6 patients enrolled and treated
- Median age = 73
- 4 patients relapsed; 2 patients refractory
- Males to female ratio 1:1
- 100% Caucasian
- Median lines of prior therapy = 2 (range 1-7)
- 4 patients with previous lenalidomide exposure
- All patients with previous bortezomib exposure
- Serum protein electrophoresis monoclonal protein (SPEP) at baseline ranged from $0.2-2.1~\mathrm{g/dL}$
- Free-light chain (FLC) ratio ranged from 0.01 387.9
- Urinary protein electrophoresis (UPEP) 24 hr ranged from 17-1812 mg/d

Hematologic Toxicity Associated With STAR-LLD

	Hemoglobin		White Blood Cells		Absolute Neutrophils		Platelets		
	g/dL	Grade	×10 ⁹ /L	Grade	×10 ⁹ /L	Grade	×10 ⁹ /L	Grade	
	<lln 10.0<="" th="" –=""><th>1</th><th><lln -="" 3.0<="" th=""><th>1</th><th><lln 1.5<="" th="" –=""><th>1</th><th><lln -="" 75<="" th=""><th>1</th></lln></th></lln></th></lln></th></lln>	1	<lln -="" 3.0<="" th=""><th>1</th><th><lln 1.5<="" th="" –=""><th>1</th><th><lln -="" 75<="" th=""><th>1</th></lln></th></lln></th></lln>	1	<lln 1.5<="" th="" –=""><th>1</th><th><lln -="" 75<="" th=""><th>1</th></lln></th></lln>	1	<lln -="" 75<="" th=""><th>1</th></lln>	1	
CTCAE Grade	<10.0 -8.0	2	<3.0 – 2.0	2	<1.5 – 1.0	2	<75 – 50	2	
	<8.0	3	<2.0 – 1.0	3	<1.0 - 0.5	3	<50 - 25	3	
Patient number									
101-01	12.8	0	5.3	0	2.5	0	147	0	
101-02	6.1ª	3	2.4	2	1.1	2	117	1	
101-03	8.5	2	3.7	1	2.1	1	151	0	
101-04	12.5	0	5.3	0	3.6	0	74	2	
102-01	11.4	1	4.8	0	2.4	1	108	1	
102-02	9.4	2	4.9	0	2.5	0	234	0	

^a Event classified by Investigator as not related. Patient had hemoglobin of 8.3 g/dL at baseline (medical history of anaemia and had active GI bleed).

Pharmacokinetics and Response Data by Patient

Patient	Prior # of lines	Steady State Concentration ± SD (µg/L)	Best Response On-study	PFS
101-01	3	28.0 + 3.2	PR	18*
101-02	2	62.2 + 16.3	PR	17*
101-03	1	43.3 + 2.7	PR	13*
101-04	7	36.8 + 1.3	PR	6
102-01	1	41.8 + 4.1	CR	11*
102-02	4	35.0 + 1.8	PR	9

CR: complete response; PR: partial response; SD: standard deviation * - ongoing – at last sampling

Discussion

- The number of patients treated was small and caution should be used evaluating the data
- The rationale for the selection of the Len dose is based on in vitro activity
 of Len on IL-2 and IFN-γ production and Icarus/Aeolus ubiquitination
- The Len target blood levels of > 25 μ g/L were achieved, and we observed excellent ORR and tolerability with a continuous dose of 400 μ g/h
- Data suggests low-dose continuous lenalidomide improves the therapeutic index vs. oral Len and avoids the grade 3-4 hematologic toxicity of >59% observed in a literature-based report in 2nd line RRMM¹

1-DM Weber et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. NEJM 2007; 357: 2133-2142.

Conclusions

- The PK/PD data minimized Cmax and lowered AUC while achieving biologically active doses and reducing toxicity
- Continuous Len for ≥ 6+ cycles didn't result in any drug-related Grade 3-4 hematologic toxicity
- Non-hematologic toxicities didn't exceed Grade 2
- All patients achieved an objective response (1 CR and 5 PR)
- Continuous treatment with Len does not appear to significantly increase immune checkpoints associated with T cell exhaustion
- Based on these data, new delivery formulations are under development and include an on-body injector, transdermal patches, and controlled release oral tablets

Next Steps – Phase 2 Dose Finding

- Phase 2 amendment was made to phase 1b protocol
 - FDA requested additional dosing finding per Project Optimus
- Phase 2 study initiated in May 2025
- Up 24 patients in dose-finding and 45 patient in expansion cohort (if needed)
- Additional randomized groups are:
 - 300 μg/hr cohort
 - 500 μg/hr cohort
 - 600 µg/hr cohort
 - Revlimid 25 mg a day for 21 of 28 days
- All interventions are the same except no biomarker data is being obtained

